ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Cyclopropylmethyl- and cyclobutylmethyllithium by an arene-catalyzed lithiation. Stability and reactivity

Itziar Peñafiel, Isidro M. Pastor*, Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain

ARTICLE INFO

Article history: Received 2 February 2010 Received in revised form 23 February 2010 Accepted 24 February 2010 Available online 1 March 2010

Keywords:
Cyclopropylmethyllithium
Cyclobutylmethyllithium
Homoallyllithium
Bishomoallyllithium
DTBB and naphthalene catalyzed lithiation
S_E reaction
Lithium

ABSTRACT

The reaction of (chloromethyl)cyclopropane **5** and (bromomethyl)cyclobutane **8** with lithium and a substoichiometric amount of DTBB, in the presence of different carbonyl compounds as electrophiles, in THF at -78 °C leads, after hydrolysis, to the corresponding cycloalkyl alcohols **6** and **9**, respectively. However, when the same starting materials are lithiated using naphthalene as catalyst in diethyl ether and at higher temperature (0 or 25 °C), and then react with the same electrophiles, the final hydrolysis yields the corresponding unsaturated alcohols **7** and **10**, respectively.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The formation of carbon–carbon bonds constitutes a key step during the synthesis of many organic products, and organometallic reagents are versatile reagents for carrying out this transformation. Among organometallic compounds, functionalized organolithium compounds constitute a unique class due to their characteristic reactivity. Regarding the lithiation agent employed for the preparation of organolithium intermediates, two different methodologies can be considered. The first one consists in the use of another organolithium reagent, and the second is the reductive lithiation using lithium metal. For the latter, the use of a substoichiometric amount of an arene to facilitate the electron transfer from the lithium to the substrate has shown to be very useful under different reaction conditions and for several types of starting materials.

The intramolecular carbolithiation of carbon–carbon double bonds is an interesting procedure to prepare functionalized carbocyclic and heterocyclic compounds.⁵ Thus, the carbanionic cyclization reaction of different alk-5-enyllithium intermediates has been extensively studied.^{6–8} Bailey et al. reported a very interesting methodology employing a catalytic amount of phenyllithium that

allowed the cycloisomerization of different alkenyl primary, secondary, tertiary, and aryl iodides to the corresponding cyclic isomer iodides, and the mechanism of this procedure being substrate dependent. Our laboratory reported the intramolecular cyclization of different hex-5-enyllithium derivatives prepared by chlorine/lithium exchange employing lithium metal. ^{8a,b} On the other hand, organolithium intermediates having in α-position a small cycloalkane (three- or four-membered rings) undergo rapidly a transformation to the more stable homoallyl- or bishomoallyllithium intermediates. Thus, cyclopropylmethyllithium 1 is an unstable intermediate even at low temperature, giving the corresponding homoallyllithium 2 with less than 1 h half-life time (Scheme 1).9 Intermediates of type 1 and 2 have been prepared employing: (a) an organolithium reagent by iodine–lithium exchange, 9,10 selenium–lithium exchange, 11 or silicon-lithium exchange (involving a Brook-type process), 12 and (b) lithium metal in a mercury-lithium transmetallation process. 13 Regarding the stability of the cyclobutylmethyllithium intermediate

^{*} Corresponding authors. Fax: +34 965 903549; e-mail addresses: ipastor@ua.es (I.M. Pastor), yus@ua.es (M. Yus).

3, which rearranges to the bishomoallyllithium intermediate **4** (Scheme 2), it has been less considered. Thus, organolithium **3** has been prepared by bromide–lithium¹⁴ or iodine–lithium exchange¹⁵ using *t*-BuLi or *n*-BuLi, respectively. Cyclobutylmethyllithium intermediate has shown lower stability than the corresponding magnesium derivatives.¹⁶

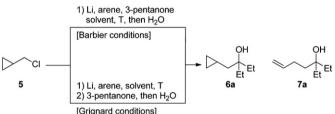
-50 °C, isooctane/Bu₂O, 1 h: (**3:4**, 95:5) 25 °C, benzene, 1 h: (**3:4**, 7:93)

Scheme 2.

Recently, we have preliminary reported that the arene-catalyzed lithiation methodology allowed the selective generation either the intermediate type **1** or type **2** from the same starting material. Herein, we describe the study of the lithiation reaction of (chloromethyl)cyclopropane and (bromomethyl)cyclobutane by means of the mentioned arene-catalyzed lithiation reaction, the stability of the generated organolithium intermediates being also studied under these reaction conditions.

2. Results and discussion

2.1. Lithiation of (chloromethyl)cyclopropane


The lithiation of (chloromethyl)cyclopropane **5** was performed employing a slight excess of lithium powder and a substoichiometric

amount of an arene [i.e., 4,4'-di-tert-butylbiphenyl (DTBB) or naphthalene; 5 mol%] in the presence (Barbier-type conditions)¹⁸ or absence (Grignard-type conditions) of 3-pentanone as the electrophile. Different reaction conditions were assayed giving after hydrolysis a mixture of the corresponding alcohols **6a** and **7a** resulting from the S_E reaction of the intermediates **1** and **2**, respectively (Table 1).

The cyclopropyl derivative **6a** was exclusively formed performing the reaction at -78 °C, in THF as solvent, under Barbier-type conditions (Table 1, entries 1 and 3). The use of DTBB as electron carrier gave better yield of the product 6a than using naphthalene (Table 1, compare entries 1 and 3). Any change in the temperature (Table 1, entry 2) or solvent (Table 1, entry 4) gave poorer results. In contrast, the best yield for obtaining exclusively the unsaturated alcohol 7a was observed by working under Grignard-type conditions at 0 °C in diethyl ether and using naphthalene as electron carrier (Table 1, entry 14). This result was not improved by performing the reaction at lower temperatures (Table 1, entries 6-9, 11 and 16), using DTBB as electron carrier (Table 1, entries 6-12) or employing other solvents (Table 1, entries 6-13 and 15). Additionally, we investigated the importance of using an arene in the selective preparation of either organolithium intermediate 1 or 2, and there was no formation of the final products when performing the reaction under the optimal conditions but in the absence of the arene (Table 1, entries 5 and 17). The use of *n*-butyllithium, instead of the combination lithium/arene to perform the chlorine-lithium exchange, gave neither of the expected alcohols (**6a** and/or **7a**), but the alcohol derived from the addition of butyllithium to the 3-pentanone.

To investigate the scope of the process, different carbonyl compounds were subjected to the optimal conditions for obtaining exclusively either the cyclopropyl alcohol **6** or the unsaturated alcohol **7** (Table 2). Thus, compounds **6** were isolated

Table 1 Arene-catalyzed lithiation of (chloromethyl)cyclopropane and S_E reaction with 3-pentanone^a

Method	Entry	T (°C)	Time ^b (min)	Arene	Solvent	Yield ^c (%)		
						6a	7a	Total
Barbier-type	1	-78	60	DTBB	THF	87	0	87
conditions	2	0	60	DTBB	THF	4	85	89
	3	-78	60	Naphthalene	THF	65	0	65
	4	-78	60	Naphthalene	Et ₂ O	1	0	1
	5 ^d	-78	60		THF	0	0	0
Grignard-type	6	-78	60+30	DTBB	THF	19	53	72
conditions	7	-78	90+30	DTBB	THF	3	66	69
	8	-78	180+30	DTBB	THF	1	50	51
	9	-45	60+30	DTBB	THF	4	90	94
	10	0	60+30	DTBB	THF	0	84	84
	11	-78 to 0	60+30	DTBB	THF	0	87	87
	12	0	60+30	DTBB	THP	7	44	51
	13	0	60+30	Naphthalene	THF	0	54	54
	14	0	60+30	Naphthalene	Et ₂ O	0	97	97
	15	0	60+30	Naphthalene	THP	0	51	51
	16	-78	60+30	Naphthalene	Et ₂ O	2	3	5
	17 ^d	0	60 + 30	-	Et ₂ O	0	6	6

a Reactions performed with (chloromethyl)cyclopropane (2 mmol), Li (7.1 mmol), arene (0.1 mmol), solvent (10 mL), and 3-pentanone (2.2 mmol).

b Under Grignard conditions the given times correspond to the two steps (lithiation and reaction with the electrophile).

Yields of compounds 6a and 7a were calculated by GLC using an internal standard (1-decanol).

^d The starting material was recovered.

with satisfactory yields performing the lithiation reaction, with 5 mol % of DTBB, under Barbier-type conditions at -78 °C in THF as solvent, the corresponding alcohols **7** being not detected in any case (Table 2, Method A). However, carrying out the reaction under the optimal conditions for generating the intermediate **2** (naphthalene, Grignard-type conditions, 0 °C, Et₂O) the process gave exclusively, after S_F (electrophilic

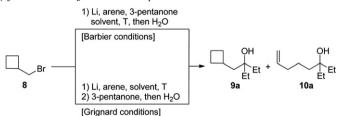
Table 2
Preparation of cyclopropyl alcohols 6 and unsaturated alcohols 7

Entry	Method ^a	R ¹	R ²	Product	Yield ^b (%)
1	A	Et	Et	6a	67
2	Α	n-Pr	n-Pr	6b	61
3	Α	c - C_3H_5	c - C_3H_5	6c	53
4	Α	$(CH_2)_5$		6d	71
5	Α	Ph	Me	6e	63
6	Α	t-Bu	Н	6f	53
7	Α	i-Pr	Н	6g	52
8	Α	Ph	Н	6h	62
9	В	Et	Et	7a	77
10	В	n-Pr	n-Pr	7b	70
11	В	c - C_3H_5	c - C_3H_5	7c	51
12	В	$(CH_2)_5$		7d	65
13	В	Ph	Me	7e	63
14	В	t-Bu	Н	7f	51
15	В	i-Pr	Н	7g	63
16	В	Ph	Н	7h	50

 $[^]a$ Method A: (a) (chloromethyl)cyclopropane, Li (1.8 equiv), DTBB (5 mol %), electrophile (1.1 equiv), THF, $-78\,^{\circ}\text{C}$, 60 min; (b) H₂O. Method B: (a) (chloromethyl)cyclopropane, Li (1.8 equiv), naphthalene (5 mol %), Et₂O, 0 °C, 60 min; (b) electrophile (1.1 equiv), 0 °C, 30 min; (c) H₂O.

substitution) and hydrolysis, compounds **7** with satisfactory yields (Table 2, Method B).

2.2. Lithiation of (bromomethyl)cyclobutane


Then we studied the arene-catalyzed lithiation of (bromomethyl)cyclobutane 8, trying to find reaction conditions for the selective generation of the intermediate **3** or **4** (Scheme 2). Thus, commercially available compound 8 was treated with an excess of lithium metal and a substochiometric amount of an arene (DTBB or naphthalene; 5 mol %) under Barbier-type or Grignardtype conditions, and employing 3-pentanone as electrophile. Different reaction conditions were tested and, after hydrolysis, the mixture of the corresponding alcohols **9a** and **10a** was obtained from the reaction of the intermediates 3 and 4, respectively (Table 3). As previously observed for the cyclopropyl derivatives, the alcohol 9a was exclusively obtained performing the reaction under Barbier-type conditions at -78 °C in THF and using DTBB as electron carrier (Table 3, entry 1). The optimal conditions to obtain exclusively the alcohol 10a were performing the reaction under Grignard-type conditions at room temperature, using naphthalene as electron carrier, in diethyl ether (Table 3, entry 3).

The scope of the reaction was studied employing different carbonyl compounds under the optimal conditions for the exclusive generation of intermediate $\bf 3$ (i.e., DTBB, THF, $-78\,^{\circ}{\rm C}$ and Barbier-type conditions), and also for the exclusive generation of $\bf 4$ (i.e., naphthalene, Et₂O, 25 °C and Grignard-type conditions). Both procedures are general for aldehydes and ketones giving the corresponding alcohols ($\bf 9$ or $\bf 10$, respectively) in satisfactory isolated yields and as the only reaction products (Table $\bf 4$).

2.3. Stability of cyclopropylmethyl- and cyclobutyl methyllithium intermediates

Finally, we studied the stability of cyclopropylmethyllithium 1 and cyclobutylmethyllithium 3 under the lithiation reaction conditions employed. For that purpose, the silane derivatives 11 and 12 were prepared by means of the optimal conditions described previously employing PhMe₂SiCl as electrophile

Table 3 Arene-catalyzed lithiation of (bromomethyl)cyclobutane and S_F reaction with 3-pentanone^a

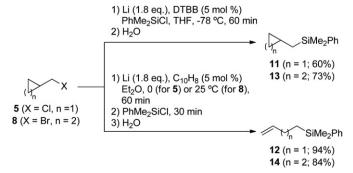
Method	Entry	T (°C)	Time ^b (min)	Arene	Solvent	Yield ^c (%	Yield ^c (%)	
						9a	10a	Total
Barbier-type	1	-78	60	DTBB	THF	88	0	88
conditions	2	0	60	DTBB	THF	44	34	78
Grignard-type	3	25	60+30	Naphthalene	Et ₂ O	0	89	89
conditions	4	0	90+30	Naphthalene	Et ₂ O	0	78	78
	5	0	60+30	DTBB	THF	13	35	48
	6	0	60+30	Naphthalene	THF	7	34	41

^a Reactions performed with (bromomethyl)cyclobutane (2 mmol), Li (7.1 mmol), arene (0.1 mmol), solvent (10 mL), and 3-pentanone (2.2 mmol).

^b Isolated yield of pure (>95%) products **6** and **7** after column chromatography (silica gel, hexane/ethyl acetate).

b Under Grignard conditions the given times correspond to the two steps (lithiation and reaction with the electrophile).

^c Yields of compounds **9a** and **10a** were calculated by ¹H NMR using an internal standard (benzene).


Table 4Preparation of cyclobutyl alcohols **9** and unsaturated alcohols **10**

$$\begin{array}{c} \text{[Method A]} \\ \text{9} \\ \\ \text{I0} \\ \\ \text{N}^{1}R^{2} \\ \\ \text{OH} \\ \\ \text{OH} \\ \\ \text{OH} \\ \\ \text{10} \\ \\ \text{OH} \\ \\ \text{OH}$$

Entry	Methoda	R ¹	R ²	Product	Yield ^b (%)
1	A	Et	Et	9a	74
2	Α	n-Pr	n-Pr	9b	58
3	Α	c - C_3H_5	c - C_3H_5	9c	52
4	Α	$(CH_2)_5$		9d	70
5	Α	Ph	Me	9e	49
6	Α	t-Bu	Н	9f	46
7	Α	i-Pr	H	9g	47
8	Α	Ph	Н	9h	70
9	В	Et	Et	10a	59
10	В	n-Pr	n-Pr	10b	69
11	В	c - C_3H_5	c - C_3H_5	10c	49
12	В	$(CH_2)_5$		10d	62
13	В	Ph	Me	10e	28
14	В	t-Bu	Н	10f	55
15	В	i-Pr	Н	10g	60
16	В	Ph	Н	10h	35

^a Method A: (a) (bromomethyl)cyclobutane, Li (1.8 equiv), DTBB (5 mol %), electrophile (1.1 equiv), THF, -78 °C, 60 min; (b) H₂O. Method B: (a) (bromomethyl)cyclobutane, Li (1.8 equiv), naphthalene (5 mol %), Et₂O, 25 °C, 60 min; (b) electrophile (1.1 equiv), 0–25 °C, 30 min; (c) H₂O.

(Scheme 3). Subsequently, a set of lithiation reactions of compound 5 were quenched at different times with PhMe₂SiCl producing mixtures of products 11 and 12 (Table 5). The rearrangement of cyclopropylmethyllithium 1 showed to be very rapid at low temperature, the ratio 11/12 being 86:14 in just 5 min (Table 5, entry 1). Additionally, we observed that in 30 min the intermediate 1 was almost completely converted into the homoallyllithium 2 (Table 1, entry 5). In the same way, the silyl derivatives 13 and 14, which were prepared from (bromomethyl)cyclobutane as described above, were used in the study of the stability of intermediate 3 (Scheme 3, Table 5). As expected, intermediate 3 probed to be very stable at low temperature, rearrangement of the organolithium being not observed after 30 min at -78 °C (Table 5, entries 6-8). Then, higher temperatures were needed to detect certain transformation of intermediate 3 into 4 (Table 5, entries 9-14).

Scheme 3.

Table 5Formation of silyl derivatives **11–14** under different reaction conditions^a

$$\begin{array}{c} \text{1) Li (1.8 eq.),} \\ \text{DTBB (5 mol \%), THF, T} \\ \text{2) PhMe}_2 \text{SiCl} \\ \text{5 (X = Cl, n = 1)} \\ \text{3) H}_2 \text{O} \\ \text{11 (n = 1)} \\ \text{12 (n = 1)} \\ \text{13 (n = 2)} \\ \text{14 (n = 2)} \\ \end{array}$$

Entry	Substrate	T (°C)	Time (min)	Products	Ratio ^b
1	5	-78	5	11/12	86:14
2	5	-78	10	11/12	33:67
3	5	-78	15	11/12	26:74
4	5	-78	20	11/12	9:91
5	5	-78	30	11/12	5:95
6	8	-78	10	13/14	>99:1
7	8	-78	20	13/14	>99:1
8	8	-78	30	13/14	>99:1
9	8	-50	10	13/14	91:9
10	8	-50	20	13/14	86:14
11	8	-50	30	13/14	75:25
12	8	0	10	13/14	76:24
13	8	0	20	13/14	66:34
14	8	0	30	13/14	58:42

^a (Chloromethyl)cyclopropane or (bromomethyl)cyclobutane (1 mmol), Li (1.8 equiv), DTBB (5 mol %), THF, then PhMe₂SiCl (1.1 equiv).

3. Conclusions

In summary, we have described herein that the arene-catalyzed lithiation is an effective methodology for the selective generation of cyclopropylmethyllithium 1 or but-3-enyllithium 2 intermediates as well as cyclobutylmethyllithium 3 or pent-4-enyllithium 4 intermediates, by a chlorine-lithium exchange. In all cases, these organolithiums react with different carbonyl compounds affording the expected alcohols. The cycloalkylmethyllithium intermediates have to be generated under milder reaction conditions [thus low temperatures and an arene with high reduction potential (i.e., DTBB)] than for the corresponding acyclic systems. In any case, intermediates 1 and 3, even under these mild conditions, have a short life time and give better results reacting immediately with the corresponding electrophiles present in the reaction medium (Barbier-type conditions). Additionally, in a comparative experiment we have shown that cyclopropylmethyllithium is less stable than the corresponding cyclobutylmethyllithium, the former suffering almost complete rearrangement in 30 min at −78 °C.

4. Experimental section

4.1. General

All lithiation reactions were carried out under argon atmosphere in oven-dried glassware. All commercially available reagents (Acros, Aldrich, Fluka) were used without further purification, except in the case of liquid electrophiles, which were used freshly distilled. Commercially available anhydrous THF (99.9%, water content \leq 0.006%, Fluka) was used as solvent in all the lithiation reactions. Lithium powder was commercially available (MEDALCHEMY S.L.). IR spectra were measured with a Nicolet Impact 400 D-FT Spectrometer. NMR spectra were recorded on a Bruker Avance 300 and Bruker Avance 400 (300 and 400 MHz for ¹H NMR, and 75 and 100 MHz for ¹³C NMR) using, except otherwise stated, CDCl3 as solvent and TMS as internal standard; chemical shifts are given in δ (ppm) and coupling constants (*J*) in hertz. Mass spectra (EI) were obtained at 70 eV on an Agilent 5973 spectrometer, fragment ions in m/z with relative intensities (%) in parenthesis and High Resolution Mass Spectra (HRMS) analyses were

^b Isolated yield of pure (>95%) products **9** and **10** after column chromatography (silica gel, hexane/ethyl acetate).

b Ratio was determined by GLC.

carried out on a Finnigan MAT95S spectrometer. The purity of volatile and the chromatographic analyses (GLC) were determined with an Agilent 6890 N instrument equipped with a flame ionization detector and a 30 m capillary column (0.25 mm diameter, 0.25 μ m film thickness), using nitrogen (2 mL/min) as carrier gas, $T_{\rm injector}$ =275 °C, $T_{\rm column}$ =60 °C (3 min) and 60–270 °C (15 °C/min); retention times ($t_{\rm R}$) are given in minutes under these conditions. Thin layer chromatography was carried out on TLC plastic sheets with silica gel 60 F₂₅₄ (Merck).

4.2. General procedure for the preparation of the alcohols 6

(Chloromethyl)cyclopropane (0.38 mL, 4 mmol) and the electrophile (4.4 mmol) were added to a suspension of lithium powder (100 mg, 14.2 mmol) and DTBB (53.2 mg, 0.2 mmol) in dry THF (15 mL) at $-78\,^{\circ}\text{C}$. The mixture was stirred for 60 min at the same temperature. The reaction mixture was hydrolyzed with water (10 mL), extracted with ethyl acetate (3×10 mL), and the organic phase was dried over anhydrous magnesium sulfate. After removing the solvent, under reduced pressure (15 Torr), the resulting crude was purified by column chromatography (pH=6.7–7.3 silica gel, mixtures of hexane and EtOAc). Yields are given in Table 2; analytical, physical and spectroscopic data, as well as literature references for known compounds, follow.

4.2.1. 3-(Cyclopropylmethyl)pentan-3-ol (**6a**). Colorless oil; t_R 7.12; R_f 0.31 (hexane/EtOAc 10:1); ν (film) 3301 cm⁻¹ (OH); δ_H 0.08 (2H, m, CH₂ ring), 0.6 (2H, m, CH₂ ring), 0.70 (1H, m, CH ring), 0.87 (6H, t, J=7.5, 2×CH₃), 1.37 (2H, d, J=6.7, CH₂COH), 1.41 (1H, s, OH), 1.55 (4H, m, 2×CH₂CH₃); δ_C 4.1 (2×CH₂ ring), 5.5 (CH ring), 7.9 (2×CH₃), 31.0 (2×CH₂CH₃), 42.9 (CH₂COH), 75.4 (COH); m/z 113 (M⁺-Et, 17%), 87 (100), 69 (15), 57 (83), 55 (10); HRMS calcd for C₇H₁₃O 113.0966, found 113.0984.

4.2.2. 3-(Cyclopropylmethyl)heptan-4-ol (**6b**). Colorless oil; t_R 9.59; R_f 0.33 (hexane/EtOAc 10:1); ν (film) 3397 (OH), 3076 cm⁻¹ (cyclopropyl); δ_H 0.05 (2H, m, CH₂ ring), 0.43 (2H, m, CH₂ ring), 0.65 (1H, m, CH ring), 0.90 (6H, t, J=9.5, 2×CH₃), 1.30, 1.47 (6H and 5H, 2m, CH₂COH, 2×CH₂CH₂CH₃); δ_C 4.1 (2×CH₂ ring), 5.6 (CH ring), 14.7 (2×CH₃), 16.8, 41.7 (2×CH₂CH₂CH₃), 43.9 (CH₂COH), 75.2 (COH); m/z 152 (M⁺-H₂O, 24%), 123 (24), 115 (40), 109 (51), 95 (37), 91 (26), 82 (18), 81 (100), 79 (40), 77 (21), 71 (33), 69 (38), 68 (17), 67 (57), 55 (75), 53 (19); HRMS [M⁺-H₂O] calcd for C₁₁H₂₀ 152.1565, found 152.1549.

4.2.3. 1,1,2-Tricyclopropylethanol (**6c**). Yellow oil; t_R 9.26; R_f 0.38 (hexane/EtOAc 10:1); ν (film) 3486 (OH), 3078 cm⁻¹ (cyclopropyl); δ_H 0.11 (2H, m, CH₂ ring), 0.36 (8H, m, 4×CH₂ ring), 0.46–0.51 (2H, m, CH₂ ring), 0.93 (3H, m, 3×CH ring), 1.13 (1H, s, OH), 1.51 (2H, d, J=6.9, CH₂COH); δ_C -0.6 (2×CH₂ ring), 0.8 (2×CH₂ ring), 4.4 (2×CH₂ ring), 6.0 (CH ring), 18.7 (2×CH ring), 47.2 (CH₂COH), 71.4 (COH); m/z 166 (M⁺, 0.05%), 148.0 (10), 120 (26), 117 (22), 115 (15), 111 (33), 107 (13), 105 (16), 103 (10), 92 (29), 91 (100), 79 (67), 78 (19), 77 (40), 69 (21), 65 (17), 55 (10), 53 (11), 51 (11).

4.2.4. 1-(Cyclopropylmethyl)cyclohexanol (**6d**). Colorless oil; t_R 10.53; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 3386 (OH), 3073 cm⁻¹ (cyclopropyl); δ_H 0.07 (2H, m, CH₂cyclopropyl), 0.48 (2H, m, CH₂ cyclopropyl), 0.77 (1H, m, CH cyclopropyl), 1.38 (2H, d, J=6.87, CH₂COH), 1.21–1.31, 1.47–1.63, 1.68–1.77, 1.82–1.91, 2.32–2.36 (1H, 7H, 1H, 1H, and 1H, 5m, respectively, $5\times$ CH₂ cyclohexyl and OH); δ_C 4.1 (2×CH₂ cyclopropyl), 5.3 (CH cyclopropyl), 22.2 (2×CH₂ cyclohexyl), 25.9 (CH₂ cyclohexyl), 37.5 (2×CH₂ cyclohexyl), 47.1 (CH₂COH), 72.3 (COH); m/z 154 (M⁺, 0.13%), 136 (44), 121 (28), 108 (17), 107 (40), 100 (42), 95 (56), 94 (37), 93 (62), 91 (35), 81 (64), 79 (100), 77 (32), 67

(52), 55 (35), 53 (19). HRMS $[M^+-H_2O]$ calcd for $C_{10}H_{18}$ 154.1358, found 154.1352.

4.2.5. 1-Cyclopropyl-2-phenylpropan-2-ol (**6e**). Yellow oil; t_R 10.06; R_f 0.32 (hexane/EtOAc 10:1); ν (film) 3407 (OH), 3076 cm⁻¹ (cyclopropyl); δ_H 0.01 (1H, m, CHH ring), 0.09 (1H, m, CHH ring), 0.40 (2H, m, CH₂ ring), 0.56 (1H, m, CH ring), 1.53 (1H, m, CHHCOH), 1.58 (3H, s, CH₃), 1.97 (1H, dd, J=14.2, 5.62, CHHCOH), 2.27 (1H, s, OH), 7.23, 7.35, 7.48 (1H, 2H and 2H, 3m, 5×ArH); δ_C 4.4 (2×CH₂ ring), 6.0 (CH ring), 29.8 (CH₃), 48.5 (CH₂COH), 75.4 (COH), 124.8, 126.4, 128.0, 148.3 (6×ArC); m/z 176 (M⁺, 0,03%), 158 (27), 143 (100), 141 (18), 129 (48), 128 (76), 127 (17), 121 (25), 115 (41), 91 (17), 77 (22); HRMS [M⁺-H₂O] calcd for C₁₁H₁₄ 158.1095, found 158.1095.

4.2.6. 1-Cyclopropyl-3,3-dimethylbutan-2-ol (**6f**). Colorless oil; t_R 8.2; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 3407 (OH), 3076 cm⁻¹ (cyclopropyl); δ_H 0.01, 0.13, 0.43, 0.52 (1H, 1H, 1H and 1H, 4m, 2×CH₂ ring), 0.83 (1H, m, CH ring), 0.88 (9H, s, 3×CH₃), 1.29 (2H, t, J_f =4.8, CH₂CHOH), 1.76 (1H, s, OH), 3.36 (1H, t, J_f =4.8, CHOH); δ_C 3.3, 5.1 (2×CH₂ ring), 8.6 (CH ring), 25.7 (3×CH₃), 34.5 (CCHOH), 36.4 (CH₂CHOH), 80.4 (CHOH); m/z 142 (M⁺, 0.15%), 124 (22), 109 (54), 95 (25), 91 (13), 87 (52), 86 (10), 85 (43), 84 (24), 83 (21), 82 (15), 81 (47), 70 (23), 69 (57), 57 (78), 57 (100), 56 (37), 55 (79), 53 (22).

4.2.7. 1-Cyclopropyl-3-methylbutan-2-ol (**6g**). Colorless oil; t_R 10.29; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 3431 cm⁻¹ (OH); δ_H 0.01 (1H, m, CHH ring), 0.11 (1H, m, CHH ring), 0.45 (2H, m, CH₂ ring), 0.75 (1H, m, CH ring), 0.89 (6H, d, J=6.8, 2×CH₃), 1.33 (2H, m, CH₂CHOH), 1.68 (1H, m, CHCHOH), 1.73 (1H, br s, OH), 3.46 (1H, m, CHOH); δ_C 3.5, 4.6 (2×CH₂ ring), 7.8 (CH ring), 17.2, 18.8 (2×CH₃), 33.2 (CHCHOH), 38.9 (CH₂CHOH), 69.8 (CHOH); m/z 110 (M⁺-H₂O, 8%), 95 (42), 91 (24), 85 (26), 81 (18), 77 (20), 73 (87), 72 (21), 70 (17), 69 (28), 67 (54), 57 (32), 56 (44), 55 (100), 54 (27), 53 (24); HRMS [M⁺-H₂O] calcd for C_8H_{14} 110.1095, found 110.1102.

4.2.8. 2-Cyclopropyl-1-phenylethanol ($\mathbf{6h}$)¹⁹. Yellow oil; t_R 9.23; R_f 0.32 (hexane/EtOAc 10:1); ν (film) 3364 (OH), 3076 cm⁻¹ (cyclopropyl); δ_H 0.01, 0.11, 0.44, 0.68 (1H, 1H, 2H and 1H, 2×CH₂ ring and CH ring), 1.58–1.72 (2H, m, CH₂CHOH), 2.17 (1H, s, OH), 4.76 (1H, dd, J=7.5, 5.8, CHOH), 7.25, 7.33 (1H and 4H, 2m, 5×ArH); δ_C 3.9, 4.4 (2×CH₂ ring), 7.6 (CH ring), 44.1 (CH₂CHOH), 74.9 (CHOH), 125.8, 127.4, 128.3, 144.6 (6×ArC); m/z 162 (M⁺, 6.57%), 144 (29), 143 (24), 142 (21), 141 (23), 129 (65), 128 (47), 115 (34), 107 (100), 105 (28), 79 (51), 77 (51), 51 (21).

4.3. General procedure for the preparation of the alcohols 7

(Chloromethyl)cyclopropane (0.38 mL, 4 mmol) was added to a suspension of lithium powder (100 mg, 14.2 mmol) and DTBB (53.2 mg, 0.2 mmol) in THF (15 mL) at 0 °C. The mixture was stirred for 60 min and then, the corresponding carbonyl compound (4.4 mmol) was added, continuing the stirring for 45 min at the same temperature. The reaction mixture was hydrolyzed with water (10 mL), extracted with ethyl acetate (3×10 mL), and the organic phase was dried over anhydrous magnesium sulfate. After removing the solvent, under reduced pressure (15 Torr), the resulting crude was purified by column chromatography (pH=6.7–7.3 silica gel, mixtures of hexane and EtOAc). Yields are given in Table 2; analytical, physical and spectroscopic data, as well as literature references for known compounds, follow.

4.3.1. 3-Ethylhept-6-en-3-ol (7a)²⁰. Colorless oil; t_R 8.30; R_f 0.40 (hexane/EtOAc 10:1); ν (film) 3437 (OH), 3077 cm⁻¹ (C=CH): δ_H 0.92 (6H, t, J=7.5, 2×CH₃), 1.56 (4H, c, J=7.5, 2×CH₂CH₃), 1.59–1.63 (2H, m, CH₂COH), 1.90 (1H, s, OH), 2.09–2.17 (2H, m, CH₂CH=CH₂), 4.98–5.12 (2H, m, CH=CH₂), 5.94 (1H, ddt, J=17.1,

10.5, 6.3, CH=CH₂); δ_C 8.2 (2×CH₃), 28.4 (CH₂CH=CH₂), 31.3 (2×CH₂CH₃), 37.8 (CH₂COH), 75.0 (COH), 114.6 (CH₂=CH), 139.6 (CH₂=CH); m/z 142 (M⁺, 0.02%), 124 (16), 95 (76), 87 (19), 67 (32), 57 (34), 55 (100).

4.3.2. 4-Propyloct-7-en-4-ol (**7b**). Colorless oil; t_R 10.18; R_f 0.4 (hexane/EtOAc 10:1); ν (film) 3394 (OH), 3077 cm⁻¹ (C=CH); δ_H 0.92 (6H, t, J=7.0, 2×CH₃), 1.25–1.46, 1.51 (8H and 2H, respectively, 2m, 2×CH₂CH₂CH₃ and CH₂COH), 2.07 (2H, m, CH₂CH=CH₂), 5.00 (2H, m, CH=CH₂), 5.84 (1H, ddt, J=16.9, 10.1, 6.5, CH=CH₂); δ_C 15.3 (2×CH₃), 17.4 (2×CH₂CH₃), 28.9 (CH₂CH=CH₂), 39.0 (CH₂COH), 42.2 (2×CH₂ CH₂CH₃), 75.0 (COH), 114.9 (CH₂=CH), 139.7 (CH₂=CH); m/z 158 (M⁺, 0.01%), 152 (19), 127 (13), 123 (28), 115 (21), 110 (56), 109 (57), 95 (19), 82 (23), 81 (54), 79 (22), 77 (14), 71 (33), 69 (100), 67 (80), 55 (87), 53 (15); HRMS [M⁺-H₂O] calcd for 152.1565, found 152.1481.

4.3.3. 1,1-Dicyclopropylpent-4-en-1-ol (7c). Yellow oil; t_R 10.72; R_f 0.31 (hexane/EtOAc 10:1); ν (film) 3382 (OH), 3073 cm⁻¹ (C=CH); δ_H 0.26–0.43 (8H, m, 4×CH₂ ring), 0.80 (2H, m, 2×CH ring), 0.92 (1H, s, OH), 1.64 (2H, m, CH₂COH), 2.27 (2H, m, CH₂CH=CH₂), 5.01 (2H, m, CH₂CH=CH₂), 5.87 (1H, ddt, J=17.0, 10.4, 6.4, CH=CH₂); δ_C 0.6 (2×CH₂ ring), 0.7 (2×CH₂ ring), 18.5 (2×CH ring), 28.3 (CH₂CH=CH₂), 41.5 (CH₂COH), 70.7 (COH), 114.1 (CH₂=CH), 139.4 (CH₂=CH); m/z 166 (M⁺, 0.05%), 148 (25), 111 (20), 107 (16), 105 (44), 92 (18), 91 (90), 79 (100), 78 (15), 77 (41), 69 (14), 65 (18); HRMS [M⁺-H₂O] calcd for $C_{11}H_{16}$ 148.1252, found 148.

4.3.4. 1-(But-3-enyl)cyclohexanol (7d) 21 . Yellow oil; t_R 8.10.20; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3423 cm $^{-1}$ (OH); δ_H 1.32–1.42, 1.44–1.60 (4H and 8H, 2 m, $5\times$ CH $_2$ cyclohexyl and CH $_2$ COH), 2.12 (2H, m, CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3$ CH $_4$ CH $_4$ CH $_4$ CH $_5$ CH $_4$ CH

4.3.5. 2-Phenylhex-5-en-2-ol (**7e**). Colorless oil; t_R 11.60; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3405 (OH), 3062 cm⁻¹ (C=CH); δ_H 1.54 (3H, s, CH₃), 1.89, 2.03 (3H and 1H, 2m, CH₂CH₂), 2.57 (1H, s, OH), 4.93 (2H, m, CH=CH₂), 5.77 (1H, m, CH₂CH=CH₂), 7.21, 7.31, 7.43 (1H, 2H and 2H, 3m, 5×ArH); δ_C 28.4 (CH₂CH=CH₂), 30.2 (CH₃), 42.9 (CH₂COH), 74.5 (COH), 114.0 (CH₂=CH), 126.4, 128.2, 128.6, 147.6 (6×ArC), 138.6 (CH₂=CH); m/z 176 (M⁺, 0.16%), 158 (43), 143 (100), 141 (19), 130 (20), 129 (65), 128 (84), 127 (16), 11 (24), 117 (13), 116 (13), 115 (61), 103 (13), 91 (31), 77 (24); HRMS calcd for C₁₂H₁₆O 176.1201, found 176.1273.

4.3.6. 2,2-Dimethylhept-6-en-3-ol (7f)²². Colorless oil; t_R 7.76; R_f 0.44 (hexane/EtOAc 10:1); ν (film) 3386 (OH), 3072 cm⁻¹ (C=CH); δ_H 0.89 (9H, s, 3×CH₃), 1.36 (1H, m, CHHCHOH), 1.61 (1H, m, CHHCHOH), 1.79 (1H, s, OH), 2.10 (1H, m, CHHCH=CH₂), 2.32 (1H, m, CHHCH=CH₂), 3.20 (1H, m, CHOH), 5.02 (2H, m, CH=CH₂), 5.85 (1H, ddt, J=17.1, 10.3, 6.7, CH=CH₂); δ_C 25.7 (3×CH₃), 30.7, 31.2 (CH₂CH₂), 34.9 (CCHOH), 79.3 (CHOH), 114.7 (CH₂=CH), 138.9 (CH₂=CH); m/z 130 (M⁺, 0.01%), 109 (29), 87 (27), 85 (69), 84 (30), 83 (29), 81 (18), 71 (19), 70 (34), 69 (27), 68 (14), 67 (90), 57 (100), 56 (20), 55 (53).

4.3.7. 2-Methylhept-6-en-3-ol $(\mathbf{7g})^{23}$. Colorless oil; $t_{\rm R}$ 7.03; $R_{\rm f}$ 0.33 (hexane/EtOAc 10:1); ν (film) 3382 (OH), 3073 cm⁻¹ (C=CH); $\delta_{\rm H}$ 0.87 (6H, d, J=9.2, 2×CH₃), 1.38–1.67 (4H, m, CH₂CHOHCH), 2.00–2.24 (2H, m, CH₂CH=CH₂), 3.33 (1H, m, CHOH), 4.99 (2H, m, CH=CH₂), 5.80 (1H, ddt, J=17.0, 10.1, 6.7, CH=CH₂); $\delta_{\rm C}$ 17.2, 18.7 (2×CH₃), 31.1, 33.8 (CH₂CH₂), 34.2 (CHCHOH), 76.1 (CHOH), 115.3

(CH₂=CH), 139.4 (CH₂=CH); *m*/*z* 118 (M⁺, 0.04%), 109 (29), 87 (27), 85 (69), 84 (30), 83 (29), 81 (18), 71 (19), 70 (34), 69 (27), 68 (14), 67 (90), 57 (100), 56 (20), 55 (53).

4.3.8. 2-Methylhept-6-en-3-ol (7h)²⁴. Yellow oil; t_R 11.5; R_f 0.31 (hexane/EtOAc 10:1); ν (film) 3348 (OH), 3064 cm⁻¹ (C=CH); δ_H 1.78 (2H, m, CH₂CHOH), 2.08 (2H, m, CH₂CH=CH₂), 2.50 (1H, s, OH), 4.59 (1H, t, J=5.8, CHOH), 5.02 (2H, m, CH=CH₂), 5.79 (1H, ddt, J=17.0, 10.3, 6.6, CH₂CH=CH₂), 7.22-7.30 (5H, m, 5×ArH); δ_C 29.9, 37.9 (CH₂CH₂), 73.8 (CHOH), 114.8 (CH₂=CH), 125.8, 127.4, 128.3, 144.5 (6×ArC), 138.1 (CH₂=CH); m/z 162 (M⁺, 0.35%), 144 (39), 143 (22), 129 (100), 128 (56), 127 (14), 115 (38), 107 (22), 91 (17), 79 (14), 77 (17), 65 (14).

4.4. General procedure for the preparation of the alcohols 9

(Bromomethyl)cyclobutane (0.34 mL, 3 mmol) and the electrophile (3.3 mmol) were added to a suspension of lithium powder (100 mg, 14.2 mmol) and DTBB (53.2 mg, 0.2 mmol) in THF (15 mL) at $-78\,^{\circ}$ C. The mixture was stirred for 60 min at the same temperature. The reaction mixture was hydrolyzed with water (10 mL), extracted with ethyl acetate (3×10 mL), and the organic phase was rinsed with brine solution (10 mL) and dried over anhydrous magnesium sulfate. After removing the solvent under reduced pressure (15 Torr), the resulting crude was purified by column chromatography (pH=6.7–7.3 silica gel, mixtures of hexane and EtOAc). Yields are given in Table 4; analytical, physical and spectroscopic data, as well as literature references for known compounds, follow.

4.4.1. 3-(Cyclobutylmethyl)pentan-3-ol (**9a**). Yellow oil; t_R 7.12; R_f 0.31 (hexane/EtOAc 10:1); ν (film) 3457 (OH), 3060 cm⁻¹ (cyclobutyl); δ_H 0.84 (6H, t, J=7.4, 2×CH₃), 1.35 (1H, s, OH), 1.42 (4H, m, 2×CH₂CH₃), 1.52 (2H, d, J=6.7, CH₂COH), 1.65–1.90, 2.01 (4H and 2H, 2m, 3×CH₂ ring), 2.44 (1H, m, CH ring); δ_C 7.8 (2×CH₃), 19.4 (CH₂ ring), 29.7 (CH₂), 31.3 (2×CH₂), 31.9 (CH), 45.5 (CH₂), 75.2 (C); m/z 138 (M⁺-H₂O, 17%), 127 (29), 87 (100), 69 (14), 57 (55), 55 (23).

4.4.2. 4-(Cyclobutylmethyl)heptan-4-ol (**9b**). Colorless oil; t_R 10.5; R_f 0.33 (hexane/EtOAc 10:1); ν (film) 3452 (OH), 2954 cm⁻¹ (cyclobutyl); δ_H 0.90 (6H, t, J=9.3, 2×CH₃), 1.12 (1H, s, OH), 1.24–1.38 (8H, m, 2×CH₂CH₂CH₃), 1.54 (2H, d, CHCH₂COH), 1.66–1.79, 1.83–1.92, 2.01–2.08 (3H, 1H and 2H, 3 m, 3×CH₂ ring), 2.44 (CH ring); δ_C 14.6 (2×CH₃), 16.8 (2×CH₂CH₃), 19.3 (CH₂CH₂CH₂ ring), 30.11 (2×CH₂ ring), 31.9 (CH ring), 41.8 (2×CH₂CH₂CH₃), 46.5 (CH₂COH), 74.9 (COH); m/z 166 (M⁺-H₂O, 11%), 141 (15), 138 (15), 123 (14), 115 (46), 109 (16), 97 (15), 96 (16), 95 (100), 91 (10), 82 (13), 81 (45), 79 (21), 77 (27), 69 (20), 67 (58), 55 (79), 53 (18).

4.4.3. 2-Cyclobutyl-1,1-dicyclopropylethanol (**9c**). Yellow oil; t_R 9.26; R_f 0.38 (hexane/EtOAc 10:1); ν (film) 3206 (OH), 3087 cm⁻¹ (cyclobutyl); δ_H 0.23–0.28, 0.31–0.40 (2H and 6H, 2m, 4×CH₂ cyclopropyl), 0.72–0.79 (2H, m, 2×CH cyclopropyl), 0.87 (1H, s, OH), 1.67 (2H, d, J=5.2, CH_2 COH), 1.70–1.84, 1.86–1.91, 2.03–2.11 (3H, 1H and 2H, 3 m, 2×CH₂ cyclobutyl), 2.65 (1H, m, J=5.8, CH cyclobutyl); δ_C –0.7 (2×CH₂ cyclopropyl), 0.8 (2×CH₂ cyclopropyl), 18.5 (2×CH cyclopropyl), 19.09 (CH₂ cyclobutyl), 30.1 (2×CH₂ cyclobutyl), 31.9 (CH cyclobutyl), 49.7 (CH₂COH), 71.0; (COH); m/z 162 (M⁺-H₂O, 2.6%), 134 (45), 119 (32), 111 (43), 106 (21), 105 (32), 91 (100), 79 (26), 78 (20), 77 (38), 69 (24), 65 (16); HRMS [M⁺-OH] calcd for C₁₂H₁₉ 163.1486, found 163.1479.

4.4.4. 1-(Cyclobutylmethyl)cyclohexanol (**9d**). Colorless oil; $t_{\rm R}$ 10.75; $R_{\rm f}$ 0.29 (hexane/EtOAc 10:1); ν (film) 3138 (OH), 2934 cm $^{-1}$ (cyclobutyl); $\delta_{\rm H}$ 1.21 (2H, m, CH $_{\rm 2}$ ring), 1.32–1.40 (2H,

m, CH₂ ring), 1.46 (4H, m, $2 \times$ CH₂ ring), 1.56 (4H, m, $2 \times$ CH₂ ring), 10.66–1.84, 1.86–1.93 (3H and 1H, 2m, $2 \times$ CH₂ ring), 2.06 (2H, def d, CH₂COH); δ_C 19.4 (CH₂ cyclobutyl), 22.1 ($2 \times$ CH₂ cyclohexyl), 25.7 (CH₂ cyclohexyl), 30.2 ($2 \times$ CH₂ cyclobutyl), 31.6 (CH cyclobutyl), 37.5 ($2 \times$ CH₂ cyclohexyl), 49.9 (CH₂COH), 72.0 (COH); m/z 168 (M⁺, 0.18%), 101 (23), 99 (100), 98 (10), 81 (50), 79 (13), 55 (30); HRMS [M⁺-H₂O] calcd for C₁₁H₁₈ 150.1409, found 150.1372.

4.4.5. 1-Cyclobutyl-2-phenylpropan-2-ol (**9e**). Yelow oil; t_R 12.11; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3439 cm $^{-1}$ (OH); δ_H 1.50 (4H, m, OH and CH₃), 1.55–1.85 (6H, m, 3×CH₂ ring), 1.82 (2H, m, J=6.7, CH₂COH), 2.30 (1H, m, CH ring), 7.18–7.25, 7.40–7.46 (2H and 3H, 2m, 5×ArH); δ_C 19.3 (CH₃), 24.8 (2×CH₂ ring), 29.7 (CH₂ ring), 32.7 (CH ring), 51.4 (CH₂CHOH), 78.8 (CHOH), 124.7, 127.3, 128.0, 143.4 (6×ArC); m/z 176 (M $^+$, 0,08%), 122 (10), 105 (12), 121 (100), 78 (15), 77 (23).

4.4.6. 1-Cyclobutyl-3,3-dimethylbutan-2-ol (**9f**). Yellow oil; t_R : 9.34; R_f 0.31 (hexane/EtOAc 10:1); ν (film) 3411 cm⁻¹ (OH); δ_H 0.88 (9H, s, 3×CH₃), 1.01 (1H, s OH), 1.7, 1.5, 1.67, 1.77–1.94 (1H, 2H, 1H, 2H, m, 3×CH₂ ring), 2.03–2.12 (2H, m, CH₂CHOH), 2.44–2.54 (1H, m, CH ring), 3.16 (1H, m, CHOH); δ_C 18.6 (CH₂ ring), 25.6 (3×CH₃), 28.0 (2×CH₂ ring), 29.5 (CH ring), 34.7 (CHCHOH), 38.7 (CH₂CHOH), 78.3 (CHOH); m/z 156 (M⁺, 0.01%), 99 (47), 95 (6), 87 (60), 81 (100), 71 (14), 70 (36), 69 (30), 57 (36), 55 (53).

4.4.7. 1-Cyclobutyl-3-methylbutan-2-ol (**9g**). Colorless oil; t_R 10.29; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 3383 cm⁻¹ (OH); δ_H 0.88 (6H, d, J=7.2, 2×CH₃), 1.45–1.58, 1.66–1.72, 1.73–1.79 (2H, 2H and 2H, 3m, 3×CH₂ ring), 1.83–1.92 (2H, m, CH₂CHOH), 1.94–2.07 (1H, m, CHCHOH), 2.4–2.7 (1H, m, CH ring); δ_C 18.5, 18.8 (2×CH₃), 20.21, 31.4, 31.8 (3×CH₂ ring), 34.4 (CH ring), 34.6 (CHCHOH), 43.0 (CH₂CHOH), 70.2 (CHOH); m/z 142 (M⁺, 11%), 141 (100), 97 (37), 95 (13), 81 (16), 71 (45), 70 (45), 67 (12), 55 (39); HRMS [M⁺-H] calcd for C₉H₁₇O 141.1274, found 141.1280.

4.4.8. 2-Cyclobutyl-1-phenylethanol (9h)¹⁹. Yellow oil; t_R 13.7; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 3358 (OH), 3029 cm⁻¹ (cyclobutyl); δ_H 1.54–2.07 (9H, m, 3×CH₂ ring, CH ring, and CHHCHOH), 2.57 (1H, s, OH), 2.31 (1H, m, CHHCHOH), 4.55 (1H, t, J=6.9, CHOH), 7.21–7.32 (5H, m, CHAr); δ_C 18.6 (CH₂ ring), 28.3 (2×CH₂ rin), 32.6 (CH ring), 46.2 (CH₂CHOH), 72.9 (CHOH), 125.8, 127.2, 128.2, 144.8 (6×ArC); m/z 176 (M^+ , 3.81%), 107 (100), 79 (37), 77 (20), 51 (21); HRMS calcd for C₁₂H₁₆O 176.1196, found 176.1197.

4.5. General procedure for the preparation of the alcohols 10

(Bromomethyl)cyclobutane (0.34 mL, 3 mmol) was added to a suspension of lithium powder (100 mg, 14.2 mmol) and DTBB (53.2 mg, 0.2 mmol) in THF (15 mL) at 0 °C. The mixture was stirred for 60 min and then, the corresponding carbonyl compound (3.3 mmol) was added, continuing the stirring for 45 min at the same temperature. The reaction mixture was hydrolyzed with water (10 mL), extracted with ethyl acetate (3×10 mL), and the organic phase was dried over anhydrous magnesium sulfate. After removing the solvent, under reduced pressure (15 Torr), the resulting crude was purified by column chromatography (pH=6.7–7.3 silica gel, mixtures of hexane and EtOAc). Yields are given in Table 4; analytical, physical and spectroscopic data, as well as literature references for known compounds, follow.

4.5.1. 3-Ethyloct-7-en-3-ol (**10a**). Colorless oil; t_R 8.57; R_f 0.32 (hexane/EtOAc 10:1); ν (film) 3365 (OH), 3068 cm⁻¹ (C=CH); δ_H 0.86 (6H, t, J=7.5, 2×CH₃), 1.17 (1H, s, OH), 1.40–1.50 (8H, m, 2×CH₂CH₃ and CH₂CH₂CHOH), 2.06 (2H, CH₂CH=CH₂), 5.00 (2H, m, CH₂CH=CH₂),

5.81 (1H, ddt, J=17.2, 10.3, 6.5, CH₂CH=CH₂); δ_C 7.7 (2×CH₃), 22.7 (2×CH₂CH₃), 31.0 (CH₂CH₂COH), 34.2 (CH₂CH=CH₂), 37.6 (CH₂COH), 74.5 (COH), 114.5 (CH₂=CH), 138.7 (CH₂=CH); m/z 156 (M⁺, 0,03%), 127 (28), 87 (96), 86 (11), 69 (15), 57 (19); HRMS [M⁺+H] calcd for C₁₀H₂₁O 157.1586, found 157.1580.

4.5.2. 4-Propylnon-8-en-4-ol (10b). Yellow oil; t_R 10.53; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3468 cm⁻¹ (OH); δ_H 0.91 (6H, t, J=5.4, 2×CH₃), 1.27–1.37, 1.42 (4H and 8H, 2m, 2×CH₂CH₂CH₃ and 2×CH₂CH₂COH), 2.05 (2H, m, CH₂CH=CH₂), 4.98 (2H, m, CH=CH₂), 5.83 (1H, ddt, J=12.6, 7.8, 5.1, CH=CH₂); δ_C 14.7 (2×CH₃), 16.7 (2×CH₂CH₃), 22.8 (2×CH₂CH₂CH₃), 34.2 (CH₂CH=CH₂), 38.7 (CH₂CH₂CH₂), 41.6 (CH₂COH), 74.4 (COH), 114.5 (CH=CH₂), 138.8 (CH=CH₂); m/z 166 [M⁺-H₂O] (4.4%), 141 (23), 123 (22), 115 (55), 110 (24), 95 (27), 91 (12), 84 (24), 83 (26), 82 (18), 81 (58), 79 (26), 77 (17), 71 (66), 69 (62), 67 (58), 55 (100), 53 (27); HRMS [M⁺-Et] calcd for C₁₀H₁₉O 155.1435, found 155.1430.

4.5.3. 1,1-Dicyclopropylhex-5-en-1-ol (**10c**). Yellow oil; t_R 10.73; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 3488 cm⁻¹ (OH); δ_H 0.24–0.31, 0.33–0.45 (3H and 5H, 2m, 4×CH₂ ring),0.81 (2H, m, 2×CH ring), 0.90 (1H, s, OH), 1.58 (2H, m, CH₂COH), 2.07 (2H, m, CH₂CH=CH₂), 4.98 (2H, m, CH₂CH=CH₂), 5.84 (1H, ddt, J=17.0, 10.1, 6.7, CH=CH₂); δ_C -0.7 (2×CH₂ ring), 0.7 (2×CH₂ ring), 18.4 (2×CH ring), 23.1 (CH₂CH₂CH₂), 34.3 (CH₂CH=CH₂), 42.1 (CH₂COH), 70.7 (COH), 114.3 (CH₂=CH), 138.9 (CH₂=CH); m/z 162 [M⁺-H₂O] (3%), 121 (57), 111 (60), 105 (17), 93 (53), 92 (10), 91 (67), 80 (12), 79 (100), 78 (16), 77 (60), 69 (39), 67 (88), 65 (25), 55 (36); HRMS [M⁺-H₂O] calcd for C₁₂H₁₈ 162.1409, found 162.1447.

4.5.4. 1-(Pent-4-enyl)cyclohexanol (**10d**)²⁵. Yellow oil; t_R 10.12; R_f 0.28 (hexane/EtOAc 10:1); ν (film) 3392 cm⁻¹ (OH); δ_H 1.28–1.38, 1.44–1.60 (2H and 12H, 2m, 5×CH₂ cyclohexyl, CH₂CH₂COH and CH₂COH), 2.05 (2H, m, CH₂CH=CH₂), 4.97 (2H, m, CH=CH₂), 5.81 (1H, ddt, J=17.0, 10.2, 6.6, CH=CH₂); δ_C 22.1, 25.8, 37.4 (5×CH₂ ring), 22.2 (CH₂CH₂CH₂), 34.2 (CH₂CH=CH₂), 41.8 (CH₂COH), 71.3 (COH), 114.4 (CH₂=CH), 138.8 (CH₂=CH); m/z 168 (M), 141 (18), 124 (11), 123 (23), 115 (41), 110 (34), 95 (28), 84 (33), 83 (36), 82 (19), 81 (57), 79 (22), 77 (14), 71 (50), 69 (73), 67 (58), 55 (100), 53 (22); HRMS [M⁺-OH] calcd for C₁₁H₁₉ 151.1486, found 151.1488.

4.5.5. 2-Phenylhept-6-en-2-ol (**10e**). Colorless oil; t_R 11.77; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3405 (OH), 3062 cm⁻¹ (C=CH); δ_H 1.18–1.42 (2H, m, CH₂CH₂CH₂), 1.53 (3H, s, CH₃), 1.79 (2H, m, CH₂CHOH), 1.98 (3H, m, CH₂CH=CH₂ and OH), 4.88–4.97 (2H, m, CH=CH₂), 5.65 (1H, ddt, J=17.1, 10.3, 6.7, CH=CH₂), 7.17–7.21, 7.22–7.36, 7.37–7.42 (1H, 1H and 3H, 3m, 5×ArH); δ_C 23.2 (CH₂CH₂CH₂), 33.8 (CH₂CH=CH₂), 43.5 (CH₂COH), 74.5 (CHOH), 114.5 (CH₂=CH), 138.5 (CH₂=CH), 124.7, 126.4, 128.0, 147.9 (6×ArC); m/z 176 (M⁺, 0.06%), 144 (8), 131 (15), 121 (100), 115 (12), 105 (20), 91 (31), 77 (24); HRMS [M⁺] calcd for C₁₃H₁₈O 190.1358, found 190.1358.

4.5.6. 2,2-Dimethyloct-7-en-3-ol (10f)²². Colorless oil; t_R 8.25; R_f 0.32 (hexane/EtOAc 10:1); ν (film) 3420 (OH), 3064 cm⁻¹ (C=CH); δ_H 0.89 (9H, s, 3×CH₃), 1.18–1.29, 1.40, 1.52, 1.66 (1H, 1H, 1H and 1H, 4m, CH₂CH₂CHOH), 2.01–2.13 (2H, m, CH₂CH=CH₂), 3.14–3.19 (1H, m, CHOH), 5.83–5.04 (2H, m, CH=CH₂), 5.81 (1H, ddt, J=17.1, 10.5, 6.6, CH=CH₂); δ_C 25.6 (3×CH₃), 26.3 (CH₂CH₂CH₂), 30.8 (CCHOH), 31.2 (CH₂CHOH), 33.7 (CH₂CH=CH₂), 79.8 (CHOH), 114.5 (CH₂=CH), 138.8 (CH₂=CH); m/z 156 (M⁺, 0.02%), 141 (49), 113 (12), 99 (50), 89 (48), 81 (100) 69 (43), 67 (41), 55 (53); HRMS [M⁺-H₂O-H] calcd for C₁₀H₁₇ 137.1330, found 137.1337.

4.5.7. 2,2-Dimethyloct-7-en-3-ol (**10g**)²⁶. Colorless oil; t_R 7.03; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3420 (OH), 2959 cm⁻¹ (C=CH);

 $\delta_{\rm H}$ 0.91 (6H, d, J=5.3, 2×CH₃), 1.38–1.67 (4H, m, CH₂CHOHCH), 2.00– 2.24 (2H, m, CH₂CH=CH₂), 3.33 (1H, m, CHOH), 4.99 (2H, m, CH=CH₂), 5.80 (1H, ddt, J=17.0, 10.1, 6.7, CH=CH₂); δ_C 17.2, 18.7 (2×CH₃), 31.1, 33.8 (CH₂CH₂), 34.2 (CHCHOH), 76.1 (CHOH), 115.3 $(CH_2=CH)$, 139.4 $(CH_2=CH)$; m/z 118 $(M^+, 0.04\%)$, 109 (29), 87 (27), 85 (69), 84 (30), 83 (29), 81 (18), 71 (19), 70 (34), 69 (27), 68 (14), 67 (90), 57 (100), 56 (20), 55 (53); HRMS $[M^+]$ calcd for $C_9H_{18}O$ 142.1358, found 142.1357.

4.5.8. 1-Phenylhex-5-en-1-ol (**10h**). Yellow oil; t_R 11.5; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 3368 (OH), 3063 cm⁻¹ (C=CH); $\delta_{\rm H}$ 1.32, 1.36-1.50, 1.52-1.81 (1H, 1H and 2H, 3m, CH2CH2CHOH), 1.98-2.07 (2H, m, CH₂CH=CH₂), 2.55 (1H, s, OH), 4.58 (1H, m, CHOH), 4.90-5.00 $(2H, m, CH=CH_2), 5.75 (1H, ddt, J=17.1, 10.2, 6.6, CH_2CH=CH_2), 7.21-$ 7.33 (5H, m, ArH); $\delta_{\rm C}$ 33.5 (CH₂CH₂CH₂), 38.4 (CH₂CH=CH₂), 65.3 (CH₂CHOH), 74.7 (CHOH), 114.6 (CH₂=CH), 140.8 (CH₂=CH), 127.6, 128.4, 128.5, 144.9 (6×ArC); m/z 176 (M⁺, 0.16%), 158 (43), 143 (100), 141 (19), 130 (20), 129 (65), 128 (84), 127 (16), 11 (24), 117 (13), 116 (13), 115 (61), 103 (13), 91 (31), 77 (24); HRMS [M⁺] calcd for C₁₂H₁₆O 176.1201, found 176.1209.

4.6. Preparation of the silyl compounds 11-14

Following the same procedures as described for the preparation of the alcohols the corresponding silyl derivatives 11-14 were prepared and isolated, employing PhMe₂SiCl as electrophile. Yields are given in Scheme 3; analytical, physical and spectroscopic data, follow.

4.6.1. (Cyclopropylmethyl)dimethyl(phenyl)silane (11). Yield 60%; colorless oil; t_R 11.00; R_f 0.30 (hexane); ν (film) 3069 cm⁻¹ (CH ring); $\delta_{\rm H}$ 0.10 (1H, m, CHH ring), 0.33 (1H, m, CHH ring), 0.37 (2H, m, CH₂ ring), 0.42 (6H, s, 2×CH₃), 0.46 (1H, m, CH ring), 0.92 (2H, d, J=6.4, CH_2Si), 7.34-7.61 (5H, m, $5\times ArH$); δ_C 0.7 ($2\times CH_3$), 0.82 (2×CH₂ ring), 6.1 (CH ring), 31.3 (CH₂Si), 126.6, 127.7, 133.0, 149.9 $(6 \times ArC)$; m/z 190 (M⁺, 2.3%), 175 (8), 136 (14), 135 (100), 121 (8), 107 (6), 105 (8), 91 (8).

4.6.2. (But-3-en-1-yl)dimethyl(phenyl)silane (12). Yield 94%; yellow oil; t_R 10.60; R_f 0.30 (hexane/EtOAc 10:1); ν (film) 2986 cm⁻¹ (C=CH); δ_H 0.25 (6H, s, 2×CH₃), 0.85 (2H, m, CH₂Si), 2.06 (2H, m, $CH_2CH=CH_2$), 4.94 (2H, m, $CH=CH_2$), 5.86 (1H, ddt, J=17.0, 10.1, 6.2, CH₂CH=CH₂), 7.33, 7.50 (3H and 2H, 2m, $5 \times ArH$); δ_C 0.8 ($2 \times CH_3$), 14.8 (CH₂Si), 27.9 (CH₂CH=CH₂), 112.8 (CH₂=CH), 127.7, 128.8, 132.9, 141.4 (6×ArC), 139.2 (CH₂=CH); m/z 190 (M⁺, 5.4%), 175 (16), 162 (13), 136 (14), 135 (100), 121 (25), 105 (10).

4.6.3. (Cyclobutylmethyl)dimethyl(phenyl)silane (13). Yield 73%; colorless oil; t_R 10.60; R_f 0.27 (hexane); ν (film) 2955 cm⁻¹ (CH ring); δ_H 0.25 (6H, s, 2×CH₃), 0.98 (2H, d, J=7.5, CH₂Si), 1.53–1.68 (2H, m, CH₂ ring), 1.7-1.8 (2H, m, CH₂ ring), 2.0-2.09 (1H, m, CH ring), 7.34, 7.45 (3H and 2H, 2 m, 5×ArH); δ_{C} 0.8 (2×CH₃), 18.5 (CH₂ ring), 24.8 (CH₂Si), 32.4 (CH ring), 32.8 (2×CH₂ ring), 127.6, 127.9, 133.5, 139.9 (6×ArC); m/z 204 (M⁺, 0.05%), 176 (5), 161 (4), 136 (14), 135 (100), 107 (11), 105 (16), 91 (10); HRMS [M⁺] calcd for C₁₃H₂₀Si 204.1334, found 204.1321.

4.6.4. (Dimethyl)pent-4-en-1-yl(phenyl)silane (14). Yield 84%; yellow oil; t_R 11.60; R_f 0.29 (hexane/EtOAc 10:1); ν (film) 2958 cm⁻¹ (C=CH); δ_H 0.32 (6H, s, 2×CH₃), 0.83 (2H, m, CH₂Si), 1.47 (2H, m, $CH_2CH_2CH_2$), 2.12 (2H, m, $CH_2CH=CH_2$), 5.01 (2H, m, $CH=CH_2$), 5.82 (1H, m, CH₂CH=CH₂), 7.39, 7.55 (3H and 2H, 2m, $5\times$ ArH); $\delta_{\rm C}$ 3.1 ($2 \times CH_3$), 15.3 (CH_2Si), 23.4 ($CH_2CH_2CH_2$), 37.5 ($CH_2CH=CH_2$), 114.5 (CH₂=CH), 127.7, 128.7, 133.5, 139.5 (6×ArC), 138.8 (CH₂=CH); m/z 204 (M⁺, 0.04%), 161 (9), 136 (14), 135 (100), 126 (14), 121 (25), 105 (8); HRMS [M⁺–Me] calcd for C₁₂H₁₇Si 189.1100, found 189.1122.

Acknowledgements

This work was generously supported by the Spanish Ministerio de Educación y Ciencia [CTQ2004-01261, CTQ2007-65218, and CONSOLIDER INGENIO 2010 (CSD2007-00006)], the Generalitat Valenciana (GRUPOS 03/135, GV05/52, GV/2007/036, GVPRE/2008/ 278 and PROMETEO 2009/039) and the Universidad de Alicante. I.P. thanks the Spanish Ministerio de Educación y Ciencia for a predoctoral fellowship. We also thank Medalchemy S.L. for a gift of chemicals, especially lithium powder.

References and notes

- 1. (a) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414-4435; (b) Knochel, P.; Hupe, E.; Dohle, W.; Lindsay, D. M.; Bonnet, V.; Queguiner, G.; Boudier, A.; Kopp, F.; Demay, S.; Seidel, N.; Calaza, M. I.; Vu, V. A.; Sapountzis, I.; Bunlaksananusorn, T. Pure Appl. Chem. 2002, 74, 11-17; (c) Yus, M.; Foubelo, F. In Handbook of Functionalized Organometallics; Knochel, P., Ed.; Wilev-VCH: Weinheim, 2005
- 2. (a) Nájera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155-181; (b) Nájera, C.; Yus, M. Org. Prep. Proced. Int. 1995, 27, 383-457; (c) Nájera, C.; Yus, M. Recent Res. Dev. Org. Chem. 1997, 1, 67-96; (d) Yus, M.; Foubelo, F. Rev. Heteroat. Chem. 1997, 17, 73-107; (e) Nájera, C.; Sansano, J. M.; Yus, M. Tetrahedron 2003, 59, 9255-9303; (f) Nájera, C.; Yus, M. Curr. Org. Chem. 2003, 7, 867-926; (g) Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev. 2004, 104, 2667-2722; (h) Chinchilla, R.; Nájera, C.; Yus, M. Tetrahedron 2005, 61, 3139-3176; (i) Nájera, C.; Yus, M. Tetrahedron 2005, 61, 3125-3450; (j) Brandsma, L.; Zwikker, J. W. Sci. Synth. 2006, 8a, 243-252; (k) Foubelo, F.; Yus, M. Chem. Soc. Rev. 2008, 37, 2620-2633.
- Tomooka, K.; Ito, M. In Main Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; pp 1-34.
- (a) Yus, M. Chem. Soc. Rev. 1996, 25, 155-161; (b) Ramón, D. J.; Yus, M. Eur. J. Org. Chem. 2000, 225-237; (c) Yus, M. Synlett 2001, 1197-1205; (d) Ramón, D. J.; Yus, M. Rev. Cubana Quim. 2002, 14, 75-115; (e) Yus, M.; Ramón, D. J. Latv. J. Chem. 2002, 79-92; (f) Yus, M. In The Chemistry of Organolithium Compounds; Rappoport, Z., Marek, I., Eds.; J. Wiley & Sons: Chichester, UK, 2004; pp 647-747.
- 5. Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. 2002, 646, 59-67.
- (a) Bailey, W. F.; Carson, M. W. J. Org. Chem. 1998, 63, 9960-9967; (b) Bailey, W. F.; Carson, M. W. J. Org. Chem. 1998, 63, 361-365; (c) Bailey, W. F.; Carson, M. W. Tetrahedron Lett. 1999, 40, 5433-5437; (d) Bailey, W. F.; Mealy, M. J.; Wiberg, K. B. Org. Lett. 2002, 4, 791-794; (e) Bailey, W. F.; Jiang, X. Tetrahedron 2005, 61, 3183-3194.
- 7. (a) Tomooka, K.; Komine, N.; Sasaki, T.; Shimizu, H.; Nakai, T. Tetrahedron Lett. 1998, 39, 9715-9718; (b) Hoffmann, R. W.; Koberstein, R.; Harms, K. J. Chem. Soc., Perkin Trans. 2 1999, 183-192; (c) Krief, A.; Remacle, B.; Mercier, J. Synlett 2000, 1443-1446; (d) Deng, K.; Bensari, A.; Cohen, T. J. Am. Chem. Soc. 2002, 124, 12106-12107.
- 8. (a) Yus, M.; Ortiz, R.; Huerta, F. F. Tetrahedron Lett. 2002, 43, 2957-2960; (b) Yus, M.: Ortiz, R.: Huerta, F. F. Tetrahedron 2003, 59, 8525-8542; (c) Yus, M.: Ortiz, R. Eur. I. Org. Chem. 2004, 3833-3841; (d) Yus. M.: Ortiz, R. Lett. Org. Chem. 2004, 1. 365-368; (e) Ortiz, R.; Yus, M. Tetrahedron 2005, 61, 1699-1707.
- (a) Lansbury, P. T.; Pattison, V. A. J. Am. Chem. Soc. 1963, 85, 1886-1887; (b) Lansbury, P. T.: Pattison, V. A.: Clement, W. A.: Sidler, I. D. I. Am. Chem. Soc. 1964. 86, 2247-2251.
- 10. Charette, A. B.; Naud, J. Tetrahedron Lett. 1998, 39, 7259-7262.
- 11. Hoffmann, R.; Koberstein, R. J. Chem. Soc., Perkin Trans. 2 2000, 595-602.
- 12. Clayden, J.; Watson, D. W.; Chambers, M. Tetrahedron 2005. 61. 3195-3203.
- Maercker, A.; Bsata, M.; Buchmeier, W.; Engelrn, B. Chem. Ber. 1984, 117, 2547–2554.
 Hill, E. A.; Richey, H. G., Jr.; Rees, T. C. J. Org. Chem. 1963, 28, 2161–2162.
- Bailey, W. F.; Punzalan, E. R.; Della, E. W.; Taylor, D. K. J. Org. Chem. 1995, 60, 297-300
- (a) Hill, E. A.; Davidson, J. A. J. Am. Chem. Soc. 1964, 86, 4663-4669; (b) Hill, E. A.; Ni, H.-R. J. Org. Chem. 1971, 36, 4133-4134; (c) Hill, E. A. J. Organomet. Chem. 1975, 91, 123-271; (d) Hill, E. A. Adv. Organomet. Chem. 1977, 16, 131-165; (e) Hill, E. A.; Hallade, M. W. J. Organomet, Chem. 1988, 352, 263-272.
- 17. Pastor, I. M.; Peñafiel, I.; Yus, M. Tetrahedron Lett. 2008, 49, 6870-6872.
- For a review on Barbier-type reactions, see: Alonso, F.; Yus, M. Recent Res. Dev. Org. Chem. 1997, 1, 397-436.
- 19. Christoffers, J.; Kauf, T.; Werner, T.; Rössle, M. Eur. J. Org. Chem. 2006, 2601–2608.
- Kondo, T.; Tsunawaki, F.; Sato, R.; Ura, Y.; Wada, K.; Mitsudo, T. Chem. Lett. 2003, 32, 24-25,
- 21. Hon, Y.-S.; Liu, Y.-W.; Hsich, C.-H. Tetrahedron 2004, 60, 4837-4860.
- 22. Hay, M. B.; Hardin, A. R.; Wolfe, J. P. J. Org. Chem. 2005, 70, 3099-3107.
- Taillier, C.; Hameury, T.; Bellosta, V.; Cossy, J. Tetrahedron 2007, 63, 4472–4490.
- Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Mulazzani, Q. G.; Landi, L. J. Am. Chem. Soc. 2000, 122, 4593-4601.
- 25. Hu, N. X.; Aso, Y.; Otsubo, T.; Ogura, F. J. Org. Chem. 1989, 54, 4391-4397.
- Meyer, C.; Marek, I.; Courtemanche, G.; Normant, J. Tetrahedron 1994, 50, 11665-11692.